login
A033833
Highly factorable numbers: numbers with a record number of proper factorizations.
35
1, 4, 8, 12, 16, 24, 36, 48, 72, 96, 120, 144, 192, 216, 240, 288, 360, 432, 480, 576, 720, 960, 1080, 1152, 1440, 2160, 2880, 4320, 5040, 5760, 7200, 8640, 10080, 11520, 12960, 14400, 15120, 17280, 20160, 25920, 28800, 30240, 34560
OFFSET
1,2
COMMENTS
First differs from A045783 and A330972 in lacking 60.
Indices of records in A028422 or A001055.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..235 (terms 1..118 from E. R. Canfield et al.)
E. R. Canfield, P. Erdős, C. Pomerance, On a problem of Oppenheim concerning Factorisatio Numerorum, J. Number Theory 17 (1983) 1-28, Table 1, column "n".
Jun Kyo Kim, On highly factorable numbers, Journal Of Number Theory, Vol. 72, No. 1 (1998), pp. 76-91.
Arnold Knopfmacher and Michael Mays, Ordered and unordered factorizations of integers, Mathematica Journal, Vol. 10, No. 1 (2006), pp. 72-89.
FORMULA
A001055(a(n)) = A272691(n). - Gus Wiseman, Jan 13 2020
EXAMPLE
From Gus Wiseman, Jan 13 2020: (Start)
Factorizations of the initial terms:
() (4) (8) (12) (16) (24) (36) (48)
(2*2) (2*4) (2*6) (2*8) (3*8) (4*9) (6*8)
(2*2*2) (3*4) (4*4) (4*6) (6*6) (2*24)
(2*2*3) (2*2*4) (2*12) (2*18) (3*16)
(2*2*2*2) (2*2*6) (3*12) (4*12)
(2*3*4) (2*2*9) (2*3*8)
(2*2*2*3) (2*3*6) (2*4*6)
(3*3*4) (3*4*4)
(2*2*3*3) (2*2*12)
(2*2*2*6)
(2*2*3*4)
(2*2*2*2*3)
(End)
MATHEMATICA
nn=100;
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
qv=Table[Length[facs[n]], {n, nn}];
Table[Position[qv, i][[1, 1]], {i, qv//.{foe___, x_, y_, afe___}/; x>=y:>{foe, x, afe}}] (* Gus Wiseman, Jan 13 2020 *)
CROSSREFS
All terms belong to A025487 as well as to A330972.
The corresponding records are A272691.
The strict version is A331200.
Factorizations are A001055, with image A045782 and complement A330976.
Sequence in context: A066192 A097981 A330972 * A291834 A291928 A045783
KEYWORD
nonn
AUTHOR
STATUS
approved