OFFSET
1,2
COMMENTS
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..235 (terms 1..118 from E. R. Canfield et al.)
E. R. Canfield, P. Erdős, C. Pomerance, On a problem of Oppenheim concerning Factorisatio Numerorum, J. Number Theory 17 (1983) 1-28, Table 1, column "n".
Jun Kyo Kim, On highly factorable numbers, Journal Of Number Theory, Vol. 72, No. 1 (1998), pp. 76-91.
Arnold Knopfmacher and Michael Mays, Ordered and unordered factorizations of integers, Mathematica Journal, Vol. 10, No. 1 (2006), pp. 72-89.
FORMULA
EXAMPLE
From Gus Wiseman, Jan 13 2020: (Start)
Factorizations of the initial terms:
() (4) (8) (12) (16) (24) (36) (48)
(2*2) (2*4) (2*6) (2*8) (3*8) (4*9) (6*8)
(2*2*2) (3*4) (4*4) (4*6) (6*6) (2*24)
(2*2*3) (2*2*4) (2*12) (2*18) (3*16)
(2*2*2*2) (2*2*6) (3*12) (4*12)
(2*3*4) (2*2*9) (2*3*8)
(2*2*2*3) (2*3*6) (2*4*6)
(3*3*4) (3*4*4)
(2*2*3*3) (2*2*12)
(2*2*2*6)
(2*2*3*4)
(2*2*2*2*3)
(End)
MATHEMATICA
nn=100;
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
qv=Table[Length[facs[n]], {n, nn}];
Table[Position[qv, i][[1, 1]], {i, qv//.{foe___, x_, y_, afe___}/; x>=y:>{foe, x, afe}}] (* Gus Wiseman, Jan 13 2020 *)
KEYWORD
nonn
AUTHOR
STATUS
approved