login
This site is supported by donations to The OEIS Foundation.

 

Logo

"Email this user" was broken Aug 14 to 9am Aug 16. If you sent someone a message in this period, please send it again.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A032811 Numbers whose set of base 11 digits is {2,3}. 1
2, 3, 24, 25, 35, 36, 266, 267, 277, 278, 387, 388, 398, 399, 2928, 2929, 2939, 2940, 3049, 3050, 3060, 3061, 4259, 4260, 4270, 4271, 4380, 4381, 4391, 4392, 32210, 32211, 32221, 32222, 32331, 32332, 32342, 32343, 33541, 33542, 33552, 33553, 33662, 33663 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Vincenzo Librandi and Bruno Berselli, Table of n, a(n) for n = 1..1000 (first 200 terms from Vincenzo Librandi).

Index entries for 11-automatic sequences.

FORMULA

a(1)=2, a(2)=3; a(n) = 11*a(floor(n/2))+2 for n odd, otherwise a(n) = 11*a(floor((n-1)/2))+3. - Bruno Berselli, May 28 2012

MATHEMATICA

fQ[n_]:=Union@Join[{2, 3}, IntegerDigits[n, 11]]=={2, 3}; Select[Range[0, 60000], fQ] (* Vincenzo Librandi, May 25 2012 *)

PROG

(PARI) {for(vv=1, 44,

bvv=binary(vv+1);

texp=0; btb=0;

forstep(i=length(bvv)-1, 1, -1, btb=btb+(2+bvv[i+1])*11^texp; texp++);

print1(btb, ", "))} \\ Douglas Latimer, May 17 2012

(Maxima) a[1]:2$ a[2]:3$ a[n]:= if oddp(n) then 11*a[floor(n/2)]+2 else 11*a[floor((n-1)/2)]+3$ makelist(a[n], n, 1, 44); \\ Bruno Berselli, May 28 2012

(MAGMA) [n: n in [1..33663] | Set(IntegerToSequence(n, 11)) subset {2, 3}]; // Bruno Berselli, May 28 2012

CROSSREFS

Sequence in context: A092043 A055067 A037319 * A092049 A257789 A061778

Adjacent sequences:  A032808 A032809 A032810 * A032812 A032813 A032814

KEYWORD

nonn,base,easy

AUTHOR

Clark Kimberling

EXTENSIONS

More terms from Douglas Latimer, May 17 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 20 11:43 EDT 2017. Contains 290835 sequences.