login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A032456
Numbers k such that 159*2^k + 1 is prime.
1
6, 7, 9, 18, 19, 22, 30, 34, 42, 106, 190, 262, 339, 354, 379, 478, 523, 690, 718, 855, 963, 1087, 2478, 3309, 3862, 4155, 5098, 6678, 12898, 14226, 14274, 18738, 20065, 24390, 44079, 103417, 108850, 112374, 142462, 280438, 514927, 650934, 689437, 1579426
OFFSET
1,1
COMMENTS
The subsequence of prime values starts 7, 19, 379, 523, 1087, ... - Muniru A Asiru, Apr 28 2019
MAPLE
select(k->isprime(159*2^k+1), [$0..1000]); # Muniru A Asiru, Dec 21 2018
MATHEMATICA
Select[Range[1000], PrimeQ[159*2^# + 1] & ] (* Robert Price, Dec 18 2018 *)
PROG
(PARI) is(n)=ispseudoprime(159*2^n+1) \\ Charles R Greathouse IV, Jun 13 2017
(Magma) [n: n in [1..1000] | IsPrime(159*2^n+1)]; // G. C. Greubel, Apr 28 2019
(Sage) [n for n in (1..1000) if is_prime(159*2^n+1)] # G. C. Greubel, Apr 28 2019
(GAP) Filtered([1..1000], k-> IsPrime(159*2^k+1)); # G. C. Greubel, Apr 28 2019
CROSSREFS
Sequence in context: A289547 A329912 A187922 * A228442 A328644 A164989
KEYWORD
nonn,hard
EXTENSIONS
a(36)-a(44) from the Ray Ballinger and Wilfrid Keller link by Robert Price, Dec 18 2018
STATUS
approved