%I
%S 1,1,1,2,1,1,1,3,1,2,1,2,4,1,1,3,1,2,5,3,1,2,1,1,2,6,1,4,3,3,1,1,2,7,
%T 3,1,1,2,4,1,1,2,8,1,4,1,3,3,5,1,1,4,9,3,2,5,1,5,1,1,4,3,2,10,1,5,1,1,
%U 3,8,2,1,1,1,2,11,3,1,5,6,4,2,4,3,1,1,1,7,12,5,2,3,2,1,9,4,5,7,1,1,6
%N Triangle of thirdtolast man to survive in the Josephus problem of n men in a circle with every kth killed, with k<=n.
%D Ball, W. W. R. and Coxeter, H. S. M., Mathematical Recreations and Essays, 13th ed. New York: Dover, pp. 3236, 1987.
%D Kraitchik, M. "Josephus' Problem." Sec. 3.13 in Mathematical Recreations. New York: W.W. Norton, pp. 9394, 1942.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/JosephusProblem.html">More information</a>
%Y Cf. A032434, A032435, A032436.
%K nonn,tabl
%O 3,4
%A _N. J. A. Sloane_.
