login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A032032
Number of ways to partition n labeled elements into sets of sizes of at least 2 and order the sets.
33
1, 0, 1, 1, 7, 21, 141, 743, 5699, 42241, 382153, 3586155, 38075247, 428102117, 5257446533, 68571316063, 959218642651, 14208251423433, 223310418094785, 3699854395380371, 64579372322979335, 1182959813115161773, 22708472725269799933, 455643187943171348103
OFFSET
0,5
COMMENTS
From Dennis P. Walsh, Apr 15 2013: (Start)
With m = floor(n/2), a(n) is the number of ways to distribute n different toys to m numbered children such that each child receiving a toy gets at least two toys and, if child k gets no toys, then each child numbered higher than k also gets no toys.
a(n) = sum of n-th row of triangle A200091 for n >= 2. (End)
LINKS
C. G. Bower, Transforms (2).
P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see p. 245.
I. Mezo, Periodicity of the last digits of some combinatorial sequences, arXiv preprint arXiv:1308.1637 [math.CO], 2013 and J. Int. Seq. 17 (2014) #14.1.1.
Robert A. Proctor, Let's Expand Rota's Twelvefold Way For Counting Partitions!, arXiv:math/0606404 [math.CO], 2006-2007.
FORMULA
"AIJ" (ordered, indistinct, labeled) transform of 0, 1, 1, 1...
E.g.f.: 1/(2+x-exp(x)).
a(n) = n! * Sum_{k=1..n} Sum_{j=0..k} C(k,j) * Stirling2(n-k+j,j) * (j!/(n-k+j)!) *(-1)^(k-j); a(0)=1. - Vladimir Kruchinin, Feb 01 2011
a(n) ~ n! / ((r-1)*(r-2)^(n+1)), where r = -LambertW(-1,-exp(-2)) = 3.14619322062... - Vaclav Kotesovec, Oct 08 2013
a(0) = 1; a(n) = Sum_{k=2..n} binomial(n,k) * a(n-k). - Ilya Gutkovskiy, Feb 09 2020
a(n) = Sum_{s in S_n^0} Product_{i=1..n} binomial(i,s(i)-1), where s ranges over the set S_n^0 of derangements of [n], i.e., the permutations of [n] without fixed points. - Jose A. Rodriguez, Feb 02 2021
EXAMPLE
For n=5, a(5)=21 since there are 21 toy distributions satisfying the conditions above. Denoting a distribution by |kid_1 toys|kid_2 toys|, we have the distributions
|t1,t2,t3,t4,t5|_|, |t1,t2,t3|t4,t5|, |t1,t2,t4|t3,t5|, |t1,t2,t5|t3,t4|, |t1,t3,t4|t2,t5|, |t1,t3,t5|t2,t4|, |t1,t4,t5|t2,t3|, |t2,t3,t4|t1,t5|, |t2,t3,t5|t1,t4|, |t2,t4,t5|t1,t3|, |t3,t4,t5|t1,t2|, |t1,t2|t3,t4,t5|, |t1,t3|t2,t4,t5|, |t1,t4|t2,t3,t5|, |t1,t5|t2,t3,t4|, |t2,t3|t1,t4,t5|, |t2,t4|t1,t3,t5|, |t2,t5|t1,t3,t4|, |t3,t4|t1,t2,t5|, |t3,t5|t1,t2,t4|, and |t4,t5|,t1,t2,t3|. - Dennis P. Walsh, Apr 15 2013
MAPLE
spec := [ B, {B=Sequence(Set(Z, card>1))}, labeled ]; [seq(combstruct[count](spec, size=n), n=0..30)];
# second Maple program:
b:= proc(n) b(n):= `if`(n=0, 1, add(b(n-j)/j!, j=2..n)) end:
a:= n-> n!*b(n):
seq(a(n), n=0..25); # Alois P. Heinz, Jul 29 2014
MATHEMATICA
a[n_] := n! * Sum[ Binomial[k, j] * StirlingS2[n-k+j, j]*j! / (n-k+j)! * (-1)^(k-j), {k, 1, n}, {j, 0, k}]; a[0] = 1; Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Sep 05 2012, from given formula *)
PROG
(PARI) x='x+O('x^66); Vec(serlaplace( 1/(2+x-exp(x)) ) ) \\ Joerg Arndt, Apr 16 2013
CROSSREFS
Cf. column k=2 of A245732.
Cf. A200091.
Sequence in context: A061961 A028248 A267609 * A084711 A183938 A060146
KEYWORD
nonn
STATUS
approved