login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A031928 Lower prime of a difference of 10 between consecutive primes. 15
139, 181, 241, 283, 337, 409, 421, 547, 577, 631, 691, 709, 787, 811, 829, 919, 1021, 1039, 1051, 1153, 1171, 1249, 1399, 1471, 1627, 1699, 1723, 1801, 1879, 2017, 2029, 2053, 2089, 2143, 2521, 2647, 2719, 2731, 2767, 2887, 2917, 3001, 3109, 3361, 3517, 3547, 3571, 3583, 3709, 3769, 3823, 3853, 4201, 4219, 4231, 4243, 4261, 4273, 4327, 4339, 4363, 4483, 4663, 4861, 4909, 4957, 5011, 5179, 5323, 5581, 5659, 5701, 5791, 5869, 6079, 6091 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Conjecture: The sequence is infinite and for every n, a(n+1) < a(n)^(1+1/n). Namely a(n)^(1/n) is a strictly decreasing function of n (See comment lines of the sequence A248855). - Jahangeer Kholdi and Farideh Firoozbakht, Nov 29 2014

LINKS

Charles R Greathouse IV, Table of n, a(n) for n = 1..10000

Index entries for primes, gaps between

MATHEMATICA

Do[s=Prime[n]; s1=Prime[n+1]; If[Equal[s1-s, 10], Print[Prime[n]]], {n, 1, 1000}]

Transpose[Select[Partition[Prime[Range[800]], 2, 1], #[[2]]-#[[1]]==10&]] [[1]] (* Harvey P. Dale, Oct 02 2014 *)

PROG

(MAGMA) [p: p in PrimesUpTo(7000) | NextPrime(p)-p eq 10]; // Bruno Berselli, Apr 09 2013

(PARI) forprime(p=o=1, 1e4, 10+o==(o=p)&&print1(p-10", ")) \\ M. F. Hasler, Mar 10 2017

CROSSREFS

Cf. A023203, A053323.

Sequence in context: A050967 A071382 A209618 * A095649 A016067 A142524

Adjacent sequences:  A031925 A031926 A031927 * A031929 A031930 A031931

KEYWORD

nonn,easy,changed

AUTHOR

Lekraj Beedassy, Jul 23 2003

EXTENSIONS

Edited by Labos Elemer, Jul 25 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 22 22:17 EDT 2017. Contains 283901 sequences.