

A031928


Lower prime of a difference of 10 between consecutive primes.


23



139, 181, 241, 283, 337, 409, 421, 547, 577, 631, 691, 709, 787, 811, 829, 919, 1021, 1039, 1051, 1153, 1171, 1249, 1399, 1471, 1627, 1699, 1723, 1801, 1879, 2017, 2029, 2053, 2089, 2143, 2521, 2647, 2719, 2731, 2767, 2887, 2917, 3001, 3109, 3361, 3517, 3547, 3571, 3583, 3709, 3769, 3823, 3853, 4201, 4219, 4231, 4243, 4261, 4273, 4327, 4339, 4363, 4483, 4663, 4861, 4909, 4957, 5011, 5179, 5323, 5581, 5659, 5701, 5791, 5869, 6079, 6091
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Conjecture: The sequence is infinite and for every n, a(n+1) < a(n)^(1+1/n). Namely a(n)^(1/n) is a strictly decreasing function of n (See comment lines of the sequence A248855).  Jahangeer Kholdi and Farideh Firoozbakht, Nov 29 2014


LINKS

Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Index entries for primes, gaps between


MATHEMATICA

Transpose[Select[Partition[Prime[Range[800]], 2, 1], #[[2]]  #[[1]] == 10&]] [[1]] (* Harvey P. Dale, Oct 02 2014 *)


PROG

(MAGMA) [p: p in PrimesUpTo(7000)  NextPrime(p)p eq 10]; // Bruno Berselli, Apr 09 2013
(PARI) forprime(p=o=1, 1e4, 10+o==(o=p)&&print1(p10", ")) \\ M. F. Hasler, Mar 10 2017


CROSSREFS

Cf. A023203, A053323, A248855, A290450.
Sequence in context: A071382 A290450 A209618 * A095649 A016067 A142524
Adjacent sequences: A031925 A031926 A031927 * A031929 A031930 A031931


KEYWORD

nonn,easy


AUTHOR

Lekraj Beedassy, Jul 23 2003


EXTENSIONS

Edited by Labos Elemer, Jul 25 2003


STATUS

approved



