

A028967


Theta series of a.c.c. lattice.


4



1, 0, 10, 4, 0, 8, 12, 0, 26, 0, 0, 8, 20, 0, 32, 8, 0, 16, 10, 0, 40, 8, 0, 16, 28, 0, 40, 4, 0, 8, 32, 0, 58, 16, 0, 16, 0, 0, 72, 8, 0, 16, 40, 0, 40, 8, 0, 32, 52, 0, 50, 8, 0, 24, 12, 0, 64, 16, 0, 24, 40, 0, 96, 0, 0, 16, 40, 0, 80, 16, 0, 16, 26, 0, 40, 20, 0, 32, 64, 0, 104, 0, 0, 40, 40
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

At one time Conway and I called this the z.c.c. lattice, which has led to some confusion. The a.c.c. and z.c.c. are different names for the same lattice. The a.c.c. name is preferred.
Gram matrix:
[ +4 1 +1]
[ 1 +4 +2]
[ +1 +2 +4]
This lattice has determinant 36 and kissing number 10; it is not isodual.


LINKS

John Cannon, Table of n, a(n) for n = 0..5000
J. H. Conway and N. J. A. Sloane, On Lattices Equivalent to Their Duals, J. Number Theory, 48 (1994), 373382.
K. L. Fields, The fragile lattice packings of spheres in threedimensional space, Acta Cryst. Sect. A 36 (1980), 194197.
A. Patterson, Crystal lattice models based on the close packing of spheres, Rev. Sci. Instrumen., 12 (1941), 206211.


EXAMPLE

1 + 10*q^4 + 4*q^6 + 8*q^10 + 12*q^12 + 26*q^16 + 8*q^22 + 20*q^24 + 32*q^28 + 8*q^30 + ...


PROG

(MAGMA) L:=LatticeWithGram(3, [4, 1, 1, 1, 4, 2, 1, 2, 4]); T<q> := ThetaSeries(L, 500); T;


CROSSREFS

Cf. A028966.
Sequence in context: A077194 A038305 A089478 * A097530 A063565 A177390
Adjacent sequences: A028964 A028965 A028966 * A028968 A028969 A028970


KEYWORD

nonn


AUTHOR

N. J. A. Sloane.


EXTENSIONS

Edited by N. J. A. Sloane, Sep 29 2006


STATUS

approved



