login
A028450
Number of perfect matchings in graph P_{2} X P_{6} X P_{n}.
2
1, 13, 1681, 112485, 9049169, 692276437, 53786626921, 4161756233501, 322462050747008, 24976513162427653, 1934824269280528177, 149878484960033943221, 11610280860482785441201, 899384302182455890904869, 69670430204782040731619473, 5396990358379369075151309301
OFFSET
0,2
COMMENTS
This sequence satisfies a recurrence relation of order 213. - Sergey Perepechko, Jul 07 2019
REFERENCES
Per Hakan Lundow, "Computation of matching polynomials and the number of 1-factors in polygraphs", Research report, No 12, 1996, Department of Math., Umea University, Sweden.
LINKS
A. M. Karavaev and S. N. Perepechko, Dimer problem on two-layer rectangular grid graph, (in Russian) CMMASS'2013 slides
Sergey Perepechko, Generating function in Maple notation
Sergey Perepechko, Generating function in text format
CROSSREFS
Column k=6 of A181206.
Sequence in context: A203515 A166929 A079917 * A201177 A015513 A062314
KEYWORD
nonn
AUTHOR
STATUS
approved