OFFSET
0,2
COMMENTS
Also total sum of squares of parts in all compositions of n (offset 1). Total sum of cubes of parts in all compositions of n is (13*n-36)*2^(n-1)+6*n+18 with g.f. x*(1+4x+x^2)/((2x-1)(1-x))^2, A271638; total sum of fourth powers of parts in all compositions of n is (75*n-316)*2^(n-1)+12*n^2+72*n+158 with g.f. x*(1+x)*(x^2+10*x+1)/((2*x-1)^2*(1-x)^3); total sum of fifth powers of parts in all compositions of n is (541*n-3060)*2^(n-1)+20*n^3+180*n^2+790*n+1530. - Vladeta Jovovic, Mar 18 2005
Let M = the 3 X 3 matrix [(1,0,0),(1,2,0),(1,3,2)] and column vector V = [1,1,1]. a(n) is the lower term in the product M^n * V.
LINKS
Alejandro Erickson and Mark Schurch, Monomer-dimer tatami tilings of square regions, arXiv preprint arXiv:1110.5103 [math.CO], 2011.
Alejandro Erickson and Mark Schurch, Enumerating tatami mat arrangements of square grids, in 22nd International Workshop on Combinatorial Algorithms, University of Victoria, June 20-22, volume 7056 of Lecture Notes in Computer Science (LNCS), Springer Berlin / Heidelberg, 2011, pp. 223-235
K. Kimura, S. Higuchi, Monte Carlo estimation of the number of tatami tilings, arXiv:1509.05983 [cond-mat.stat-mech], 2015-2016, eq. (2).
FORMULA
a(n) = 5*a(n-1)-8*a(n-2)+4*a(n-3). G.f.: (1+x)/((1-x)*(1-2*x)^2). - Colin Barker, Apr 04 2012
MATHEMATICA
M = {{1, 0, 0}, {1, 2, 0}, {1, 3, 2}};
a[n_] := MatrixPower[M, n].{1, 1, 1} // Last;
Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Aug 12 2018, from PARI *)
PROG
(PARI) vector(40, n, n--; ([1, 0, 0; 1, 2, 0; 1, 3, 2]^n*[1, 1, 1]~)[3]) \\ Michel Marcus, Aug 06 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved