login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A027762
Denominator of Sum_{p prime, p-1 divides 2*n} 1/p.
8
6, 30, 42, 30, 66, 2730, 6, 510, 798, 330, 138, 2730, 6, 870, 14322, 510, 6, 1919190, 6, 13530, 1806, 690, 282, 46410, 66, 1590, 798, 870, 354, 56786730, 6, 510, 64722, 30, 4686, 140100870, 6, 30, 3318, 230010, 498, 3404310, 6, 61410, 272118, 1410, 6, 4501770
OFFSET
1,1
COMMENTS
From the von Staudt-Clausen theorem, denominator(B_2n) = product of primes p such that (p-1)|2n.
Same as A002445.
REFERENCES
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, Th. 118.
H. Rademacher, Topics in Analytic Number Theory, Springer, 1973, Chap. 1.
FORMULA
a(n) = A002445(n). [Joerg Arndt, May 06 2012]
a(n) = A027760(2*n). - Ridouane Oudra, Feb 22 2022
PROG
(PARI)
a(n)=
{
my(s=0);
forprime (p=2, 2*n+1, if( (2*n)%(p-1)==0, s+=1/p ) );
return( denominator(s) );
}
/* Joerg Arndt, May 06 2012 */
CROSSREFS
Cf. A027760.
Sequence in context: A334900 A136375 A138706 * A002445 A151711 A130512
KEYWORD
nonn,frac
STATUS
approved