login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A027762 Denominator of sum_{p prime, p-1 divides 2*n} 1/p . 7
6, 30, 42, 30, 66, 2730, 6, 510, 798, 330, 138, 2730, 6, 870, 14322, 510, 6, 1919190, 6, 13530, 1806, 690, 282, 46410, 66, 1590, 798, 870, 354, 56786730, 6, 510, 64722, 30, 4686, 140100870, 6, 30, 3318, 230010, 498, 3404310, 6, 61410, 272118, 1410, 6, 4501770 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

From the Von Staudt-Clausen theorem, denominator(B_2n) = product of primes p such that (p-1)|2n.

Same as A002445.

REFERENCES

G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, Th. 118.

H. Rademacher, Topics in Analytic Number Theory, Springer, 1973, Chap. 1.

LINKS

Table of n, a(n) for n=1..48.

R. Mestrovic, On a Congruence Modulo n^3 Involving Two Consecutive Sums of Powers, Journal of Integer Sequences, Vol. 17 (2014), 14.8.4.

Index entries for sequences related to Bernoulli numbers.

FORMULA

a(n) = A002445(n). [Joerg Arndt, May 06 2012]

PROG

(PARI)

a(n)=

{

    my(s=0);

    forprime (p=2, 2*n+1, if( (2*n)%(p-1)==0, s+=1/p ) );

    return( denominator(s) );

}

/* Joerg Arndt, May 06 2012 */

CROSSREFS

Cf. A027761, A006954.

Sequence in context: A067879 A136375 A138706 * A002445 A151711 A130512

Adjacent sequences:  A027759 A027760 A027761 * A027763 A027764 A027765

KEYWORD

nonn,frac

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 16 09:16 EDT 2018. Contains 316262 sequences. (Running on oeis4.)