This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A027748 Triangle in which first row is 1, n-th row (n>1) lists distinct prime factors of n. 168

%I

%S 1,2,3,2,5,2,3,7,2,3,2,5,11,2,3,13,2,7,3,5,2,17,2,3,19,2,5,3,7,2,11,

%T 23,2,3,5,2,13,3,2,7,29,2,3,5,31,2,3,11,2,17,5,7,2,3,37,2,19,3,13,2,5,

%U 41,2,3,7,43,2,11,3,5,2,23,47,2,3,7,2,5,3,17,2,13,53,2,3,5,11,2,7,3,19,2,29,59,2,3,5,61,2,31

%N Triangle in which first row is 1, n-th row (n>1) lists distinct prime factors of n.

%C Number of terms in n-th row is A001221(n) for n>1.

%C From _Reinhard Zumkeller_, Aug 27 2011: (Start)

%C A008472(n) = Sum(T(n,k):1<=k<=A001221(n)), n>1;

%C A007947(n) = Product(T(n,k):1<=k<=A001221(n));

%C A006530(n) = Max(T(n,k):1<=k<=A001221(n));

%C A020639(n) = Min(T(n,k):1<=k<=A001221(n)).

%C (End)

%C Subsequence of A027750 that lists the divisors of n. - _Michel Marcus_, Oct 17 2015

%H T. D. Noe, <a href="/A027748/b027748.txt">Rows n=1..2048 of triangle, flattened</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/DistinctPrimeFactors.html">Distinct Prime Factors</a>.

%e {2}, {3}, {2}, {5}, {2, 3}, {7}, {2}, {3}, {2, 5}, {11}, ...

%p with(numtheory): [ seq(factorset(n), n=1..100) ];

%t Flatten[ Table[ FactorInteger[n][[All, 1]], {n, 1, 62}]](* _Jean-François Alcover_, Oct 10 2011 *)

%o import Data.List (unfoldr)

%o a027748 n k = a027748_tabl !! (n-1) !! (k-1)

%o a027748_tabl = map a027748_row [1..]

%o a027748_row 1 = [1]

%o a027748_row n = unfoldr fact n where

%o fact 1 = Nothing

%o fact x = Just (p, until ((> 0) . (`mod` p)) (`div` p) x)

%o where p = a020639 x -- smallest prime factor of x

%o -- _Reinhard Zumkeller_, Aug 27 2011

%o (PARI) print1(1);for(n=2,20,f=factor(n)[,1];for(i=1,#f,print1(", "f[i]))) \\ _Charles R Greathouse IV_, Mar 20 2013

%o (Python)

%o from sympy import primefactors

%o for n in xrange(2, 101):

%o ....print [i for i in primefactors(n)] # _Indranil Ghosh_, Mar 31 2017

%Y Cf. A000027, A001221, A001222, A027746, A141809, A141810.

%Y a(A013939(A000040(n))+1) = A000040(n).

%Y Cf. A020639, A027750.

%K nonn,easy,tabf,nice

%O 1,2

%A _N. J. A. Sloane_

%E More terms from Scott Lindhurst (ScottL(AT)alumni.princeton.edu)

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.