login
Number of "sorted permutations": permutations that can occur as the output of the sorting procedure described by Knuth.
1

%I #23 Apr 21 2015 16:45:32

%S 1,1,1,2,5,17,68,326,1780,11033,76028,578290,4803696,43297358,

%T 420639362,4382320595,48729809104,576039659209,7213070102518,

%U 95373808983223,1327842798808220,19416307366048221,297499363267839558,4766432683120731044,79699553284422816437,1388383661114307067780,25156549558328842669336

%N Number of "sorted permutations": permutations that can occur as the output of the sorting procedure described by Knuth.

%D D. E. Knuth, The Art of Computer Programming Vol. 1, p. 238.

%H M. Bousquet-Mélou, <a href="http://www.labri.fr/perso/bousquet/publis.html">Publications de Mireille Bousquet-Mélou</a>

%H M. Bousquet-Mélou, <a href="http://dx.doi.org/10.1016/S0012-365X(00)00146-1">Sorted or sortable permutations</a>, Discrete Math., 225 (2000), 25-50.

%H J. West, <a href="http://dx.doi.org/10.1016/0304-3975(93)90321-J">Sorting twice through a stack</a>, Theoret. Comput. Sci. 117 (1993) 303-313.

%H <a href="/index/So#sorting">Index entries for sequences related to sorting</a>

%Y Cf. A027432.

%K nonn,nice

%O 0,4

%A _Mireille Bousquet-Mélou_

%E Prepended a(0)=1 to match offset, added more terms, _Joerg Arndt_, Jul 01 2014