login
a(n) = Sum_{k=0..n} binomial(2*k,k)*binomial(2*n-k,k).
1

%I #32 Sep 08 2022 08:44:49

%S 1,3,13,67,375,2189,13089,79479,487833,3018355,18792303,117589689,

%T 738844719,4658460165,29458662005,186761788579,1186655988771,

%U 7554520173441,48176764031385,307706150625855,1968040844127793,12602972755261195,80798365998084795,518536437750443773

%N a(n) = Sum_{k=0..n} binomial(2*k,k)*binomial(2*n-k,k).

%C Previous name was: a(n) = self-convolution of row n of array T given by A026568.

%H G. C. Greubel, <a href="/A027277/b027277.txt">Table of n, a(n) for n = 0..1000</a>

%F From _Peter Luschny_, May 14 2016: (Start)

%F a(n) = hypergeom([1/2, -n, 1/2-n], [1, -2*n], -16) for n>=1.

%F a(n) = (2*n*(4*n-5)*(-9+4*n)*(-7+4*n)*a(n-3) - (4*n-5)*(50*n^3-175*n^2+152*n-9)* a(n-2) + (80*n^3-260*n^2+198*n-27)*(n-1)*a(n-1)) / (n*(n-1)*(-9+4*n)*(-1+2*n)) for n>=3. (End)

%F a(n) ~ sqrt(5 + 13/sqrt(17)) * ((9 + sqrt(17))/2)^n / (4*sqrt(Pi*n)). - _Vaclav Kotesovec_, May 14 2016

%p a := n -> add(binomial(2*k,k)*binomial(2*n-k,k), k=0..n):

%p seq(a(n),n=0..23); # _Peter Luschny_, May 14 2016

%t Table[Sum[Binomial[2k, k] Binomial[2n-k, k], {k,0,n}], {n,0,30}] (* _Michael De Vlieger_, May 14 2016 *)

%o (PARI) vector(30, n, n--; b=binomial; sum(k=0,n, b(2*k,k)*b(2*n-k,k)) ) \\ _G. C. Greubel_, May 23 2017, modified Aug 03 2019

%o (Magma) B:=Binomial; [(&+[B(2*k,k)*B(2*n-k,k): k in [0..n]]): n in [0..30]]; // _G. C. Greubel_, Aug 03 2019

%o (Sage) b=binomial; [sum(b(2*k,k)*b(2*n-k,k) for k in (0..n)) for n in (0..30)] # _G. C. Greubel_, Aug 03 2019

%o (GAP) B:=Binomial;; List([0..30], n-> Sum([0..n], k-> B(2*k,k)*B(2*n-k,k) )); # _G. C. Greubel_, Aug 03 2019

%Y Cf. A026568.

%K nonn

%O 0,2

%A _Clark Kimberling_

%E New name from _Peter Luschny_, May 14 2016