login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A026825 Number of partitions of n into distinct parts, the least being 4. 3
0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 6, 7, 8, 10, 11, 13, 15, 17, 20, 23, 26, 30, 35, 39, 45, 51, 58, 66, 75, 84, 96, 108, 122, 137, 155, 173, 195, 219, 245, 274, 307, 342, 383, 427, 475, 529, 589, 654, 727, 807, 894, 991, 1098, 1214, 1343, 1485, 1638, 1809 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,16

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..1000

FORMULA

a(n) = A025150(n-4), n>4. - R. J. Mathar, Jul 31 2008

G.f.: x^4*product_{j=5..infinity} (1+x^j). - R. J. Mathar, Jul 31 2008

MAPLE

b:= proc(n, i) option remember;

      `if`(n=0, 1, `if`((i-4)*(i+5)/2<n, 0,

       add(b(n-i*j, i-1), j=0..min(1, n/i))))

    end:

a:= n-> `if`(n<4, 0, b(n-4$2)):

seq(a(n), n=0..80);  # Alois P. Heinz, Feb 07 2014

MATHEMATICA

b[n_, i_] := b[n, i] = If[n == 0, 1, If[(i-4)*(i+5)/2 < n, 0, Sum[b[n-i*j, i-1], {j, 0, Min[1, n/i]}]]]; a[n_] := If[n<4, 0, b[n-4, n-4]]; Table[a[n], {n, 0, 80}] (* Jean-Fran├žois Alcover, Jun 24 2015, after Alois P. Heinz *)

CROSSREFS

Cf. A025147.

Sequence in context: A025157 A006141 A185229 * A025150 A026800 A185327

Adjacent sequences:  A026822 A026823 A026824 * A026826 A026827 A026828

KEYWORD

nonn

AUTHOR

Clark Kimberling

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 11 21:15 EST 2017. Contains 295919 sequences.