login
a(n) = T(n, floor(n/2)), T given by A026758.
10

%I #8 Nov 01 2019 03:55:02

%S 1,1,2,4,7,16,27,66,109,279,453,1201,1922,5242,8284,23133,36155,

%T 103015,159435,462269,709246,2088146,3178992,9487405,14343567,

%U 43328580,65099245,198798447,297015765,915950385,1361584755,4236322720

%N a(n) = T(n, floor(n/2)), T given by A026758.

%H G. C. Greubel, <a href="/A026764/b026764.txt">Table of n, a(n) for n = 0..1000</a>

%p T:= proc(n,k) option remember;

%p if n<0 then 0;

%p elif k=0 or k = n then 1;

%p elif type(n,'odd') and k <= (n-1)/2 then

%p procname(n-1,k-1)+procname(n-2,k-1)+procname(n-1,k) ;

%p else

%p procname(n-1,k-1)+procname(n-1,k) ;

%p end if ;

%p end proc;

%p seq(T(n, floor(n/2)), n=0..30); # _G. C. Greubel_, Oct 31 2019

%t T[n_, k_]:= T[n, k]= If[n<0, 0, If[k==0 || k==n, 1, If[OddQ[n] && k<=(n - 1)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]] ]; Table[T[n, Floor[n/2]], {n,0,30}] (* _G. C. Greubel_, Oct 31 2019 *)

%o (Sage)

%o @CachedFunction

%o def T(n, k):

%o if (n<0): return 0

%o elif (k==0 or k==n): return 1

%o elif (mod(n,2)==1 and k<=(n-1)/2): return T(n-1,k-1) + T(n-2,k-1) + T(n-1,k)

%o else: return T(n-1,k-1) + T(n-1,k)

%o [T(n, floor(n/2)) for n in (0..30)] # _G. C. Greubel_, Oct 31 2019

%Y Cf. A026758, A026759, A026760, A026761, A026762, A026763, A026765, A026766, A026767, A026768.

%K nonn

%O 0,3

%A _Clark Kimberling_