login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A026549
Ratios of successive terms are 2, 3, 2, 3, 2, 3, 2, 3, ...
17
1, 2, 6, 12, 36, 72, 216, 432, 1296, 2592, 7776, 15552, 46656, 93312, 279936, 559872, 1679616, 3359232, 10077696, 20155392, 60466176, 120932352, 362797056, 725594112, 2176782336, 4353564672, 13060694016, 26121388032, 78364164096, 156728328192, 470184984576, 940369969152
OFFSET
0,2
COMMENTS
Appears to be the number of permutations p of {1,2,...,n} such that p(i)+p(i+1)>=n for every i=1,2,...,n-1 (if offset is 1). - Vladeta Jovovic, Dec 15 2003
Equals eigensequence of a triangle with 1's in even columns and (1,3,3,3,...) in odd columns. a(5) = 72 = (1, 3, 1, 3, 1, 1) dot (1, 1, 2, 6, 12, 36) = (1 + 3 + 2 + 18 + 12 + 36), where (1, 3, 1, 3, 1, 1) = row 5 of the generating triangle. - Gary W. Adamson, Aug 02 2010
Partial products of A010693. - Reinhard Zumkeller, Mar 29 2012
Satisfies Benford's law [Theodore P. Hill, Personal communication, Feb 06, 2017]. - N. J. A. Sloane, Feb 08 2017
For n >= 2, a(n) is the least k > a(n-1) such that both k and a(n-2) + a(n-1) + k have exactly n prime factors, counted with multiplicity. - Robert Israel, Aug 06 2024
REFERENCES
Arno Berger and Theodore P. Hill, An Introduction to Benford's Law, Princeton University Press, 2015.
LINKS
Paul Barry, Embedding structures associated with Riordan arrays and moment matrices, International Journal of Combinatorics, Vol. 2014 (2014), Article ID 301394, 7 pages; arXiv preprint, arXiv:1312.0583 [math.CO], 2013.
FORMULA
Equals T(n, 0) + T(n, 1) + ... + T(n, 2n), T given by A026536.
a(n) = 2*A026532(n), for n > 0.
G.f.: (1+2*x)/(1-6*x^2) - Paul Barry, Aug 25 2003
a(n+3) = a(n+2)*a(n+1)/a(n). - Reinhard Zumkeller, Mar 04 2011
a(n) = (1/2)*(3 - (-1)^n)*6^floor(n/2), or a(n) = 6*a(n-2). - Vincenzo Librandi, Jun 08 2011
a(n) = 1/a(-n) if n is even and (2/3)/a(-n) if n is odd for all n in Z. - Michael Somos, Apr 09 2022
Sum_{n>=0} 1/a(n) = 9/5. - Amiram Eldar, Feb 13 2023
EXAMPLE
G.f. = 1 + 2*x + 6*x^2 + 12*x^3 + 36*x^4 + 72*x^5 + 216*x^6 + ... - Michael Somos, Apr 09 2022
MAPLE
seq(seq(2^i*3^j, i=j..j+1), j=0..30); # Robert Israel, Aug 06 2024
MATHEMATICA
LinearRecurrence[{0, 6}, {1, 2}, 30] (* Harvey P. Dale, May 29 2016 *)
PROG
(Magma) [(1/2)*(3-(-1)^n)*6^Floor(n/2): n in [0..30]]; // Vincenzo Librandi, Jun 08 2011
(Haskell)
a026549 n = a026549_list !! n
a026549_list = scanl (*) 1 $ a010693_list
-- Reinhard Zumkeller, Mar 29 2012
(SageMath) [(1+(n%2))*6^(n//2) for n in (0..30)] # G. C. Greubel, Apr 09 2022
(PARI) {a(n) = 6^(n\2) * (n%2+1)}; /* Michael Somos, Apr 09 2022 */
CROSSREFS
KEYWORD
nonn,easy
EXTENSIONS
New definition from Ralf Stephan, Dec 01 2004
STATUS
approved