

A026185


If n even, then 2n. If n odd, then nearest integer to 2n/3.


4



0, 1, 4, 2, 8, 3, 12, 5, 16, 6, 20, 7, 24, 9, 28, 10, 32, 11, 36, 13, 40, 14, 44, 15, 48, 17, 52, 18, 56, 19, 60, 21, 64, 22, 68, 23, 72, 25, 76, 26, 80, 27, 84, 29, 88, 30, 92, 31, 96, 33, 100, 34, 104, 35, 108, 37, 112, 38, 116, 39, 120, 41
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

For n > 0, position of n in A026184. In other words, this is the inverse permutation to A026184. For proof, see the Reble link.
Permutation of nonnegative integers: lodumo_4 of (0,1,0,2,0,3,0,1,0,2,0,3,0,1,0,2,0,3,0,1,0,2,0,3,0,1,0,2,0,3,...).  Philippe Deléham, Oct 25 2011


LINKS

Table of n, a(n) for n=0..61.
F. M. Dekking, Permutations of N generated by leftright filling algorithms, arXiv:2001.08915 [math.CO], 2020.
Don Reble, Proof that the two definitions are the same, Feb 01 2020
Index entries for linear recurrences with constant coefficients, signature (0,1,0,0,0,1,0,1)


FORMULA

a(2n)=4n; a(6n+1)=4n+1; a(6n+3)=4n+2; a(6n+5)=4n+3. G.f.: x(1+4*x+x^2+4*x^3+x^4+4*x^5+x^6)/((1+x^2+x^4)*(1x^2)^2).  Philippe Deléham, Oct 25 2011


MATHEMATICA

Table[If[EvenQ[n], 2 n, Round[2 n/3]], {n, 0, 50}] (* Vincenzo Librandi, Feb 03 2020 *)


PROG

(MAGMA) [IsEven(n) select 2*n else Round(2*n/3): n in [0..79] ]; // Vincenzo Librandi, Feb 03 2020


CROSSREFS

Cf. A026184.
Bisections: A008586, A042968.
Sequence in context: A153016 A231549 A088610 * A026209 A198473 A133640
Adjacent sequences: A026182 A026183 A026184 * A026186 A026187 A026188


KEYWORD

nonn


AUTHOR

Clark Kimberling


EXTENSIONS

Edited by N. J. A. Sloane, Feb 02 2020, changing the definition to one given by Philippe Deléham, Oct 25 2011, and making the old definition a comment. Thanks to Don Reble for proving that the two definitions produce the same sequence.


STATUS

approved



