login
A026019
a(n) = binomial(3*n,n) - binomial(3*n,n-3).
1
1, 3, 15, 83, 483, 2898, 17748, 110295, 692967, 4390815, 28009215, 179652564, 1157534420, 7486680048, 48579667704, 316107403839, 2061920664351, 13478362911825, 88272020923485, 579081767982795, 3804622827123195
OFFSET
0,2
FORMULA
G.f.: (1-2*g)*(g^2-g+1)/((3*g-1)*(g-1)^3) where g*(1-g)^2 = x. - Mark van Hoeij, Nov 09 2011
Conjecture: -2*(2*n+3)*(13*n-9)*(n+1)*a(n) +(499*n^3-7*n^2-120*n-54)*a(n-1) -3*(3*n-5)*(37*n-24)*(3*n-4)*a(n-2)=0. - R. J. Mathar, Jun 20 2013
MATHEMATICA
Table[Binomial[3n, n]-Binomial[3n, n-3], {n, 0, 20}] (* Harvey P. Dale, Jun 04 2016 *)
PROG
(PARI) a(n) = binomial(3*n, n) - binomial(3*n, n-3); \\ Michel Marcus, May 10 2020
CROSSREFS
a(n) = T(3n, n), where T is the array defined in A026009.
Sequence in context: A192662 A213096 A052451 * A354660 A118356 A074552
KEYWORD
nonn,easy
EXTENSIONS
More terms from C. Ronaldo (aga_new_ac(AT)hotmail.com), Jan 17 2005
STATUS
approved