login
Expansion of 1/((1-x^6)*(1-x^8)*(1-x^11)).
8

%I #18 Jan 24 2024 02:10:17

%S 1,0,0,0,0,0,1,0,1,0,0,1,1,0,1,0,1,1,1,1,1,0,2,1,2,1,1,1,2,1,3,1,2,2,

%T 2,2,3,1,3,2,3,3,3,2,4,2,4,3,4,3,4,3,5,3,5,4,5,4,5,4,6,4,6,5,6,5,7,5,

%U 7,5,7,6,8,6,8,6,8,7,9,7

%N Expansion of 1/((1-x^6)*(1-x^8)*(1-x^11)).

%C a(n) is the number of partitions of n into parts 6, 8, and 11. - _Michel Marcus_, Jan 24 2024

%H G. C. Greubel, <a href="/A025903/b025903.txt">Table of n, a(n) for n = 0..5000</a>

%H <a href="/index/Rec#order_25">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,1,0,1,0,0,1,0,0,-1,0,0,-1,0,-1,0,0,0,0,0,1).

%t CoefficientList[Series[1/((1-x^6)(1-x^8)(1-x^11)),{x,0,80}],x] (* _Harvey P. Dale_, May 22 2018 *)

%o (PARI) Vec(1/((1-x^6)*(1-x^8)*(1-x^11)) + O(x^90)) \\ _Jinyuan Wang_, Feb 28 2020

%o (Magma) R<x>:=PowerSeriesRing(Integers(), 100); Coefficients(R!( 1/((1-x^6)*(1-x^8)*(1-x^11)) )); // _G. C. Greubel_, Jan 23 2024

%o (SageMath)

%o def A025903_list(prec):

%o P.<x> = PowerSeriesRing(ZZ, prec)

%o return P( 1/((1-x^6)*(1-x^8)*(1-x^11)) ).list()

%o A025903_list(100) # _G. C. Greubel_, Jan 23 2024

%Y Cf. A025902, A025904.

%K nonn

%O 0,23

%A _N. J. A. Sloane_