%I #22 Nov 27 2023 17:24:15
%S 1,0,1,0,1,1,1,1,1,1,3,1,3,1,3,3,3,3,3,3,6,3,6,3,6,6,6,6,6,6,10,6,10,
%T 6,10,10,10,10,10,10,15,10,15,10,15,15,15,15,15,15,21,15,21,15,21,21,
%U 21,21,21,21,28,21,28,21,28,28,28,28,28,28,36,28,36,28,36,36,36,36,36,36
%N Expansion of 1/((1-x^2)(1-x^5)(1-x^10)) in powers of x.
%C Number of partitions of n into parts of size 2, 5, and 10.
%C a(n) is always a triangular number.
%H <a href="/index/Rec#order_17">Index entries for linear recurrences with constant coefficients</a>, signature (0, 1, 0, 0, 1, 0, -1, 0, 0, 1, 0, -1, 0, 0, -1, 0, 1).
%F G.f.: 1/((1-x^2)(1-x^5)(1-x^10)).
%F Euler transform of length 10 sequence [ 0, 1, 0, 0, 1, 0, 0, 0, 0, 1]. - _Michael Somos_, Mar 18 2012
%F a(n) = a(-17 - n) = a(n - 10) + A008616(n) for all n in Z. - _Michael Somos_, Mar 18 2012
%F a(n) = A000217( A008616(n) ) = A000008(n) - A000008(n - 1). - _Michael Somos_, Dec 15 2002
%e G.f. = 1 + x^2 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + 3*x^10 + x^11 + 3*x^12 + ...
%t CoefficientList[Series[1/((1-x^2)(1-x^5)(1-x^10)), {x,0,85}], x] (* _Harvey P. Dale_, Apr 06 2011 *)
%t a[ n_] := Module[ {m = Mod[n, 10], k}, k = n - m; If[ m == 1 || m == 3, k -= 10]; k (k + 30) / 200 + 1]; (* _Michael Somos_, Aug 16 2016 *)
%o (PARI) {a(n) = if( n<-16, a(-17 - n), polcoeff( 1 / ((1 - x^2) * (1 - x^5) * (1 - x^10)) + x * O(x^n), n))}; /* _Michael Somos_, Mar 18 2012 */
%o (PARI) {a(n) = my(m = n%10); n -= m; if( m==1 || m==3, n -= 10); n * (n + 30) / 200 + 1}; /* _Michael Somos_, Aug 16 2016 */
%Y Cf. A000008, A000217, A008616.
%K nonn,easy
%O 0,11
%A _N. J. A. Sloane_.