login
A025806
Expansion of 1/((1-x^2)(1-x^5)(1-x^6)).
0
1, 0, 1, 0, 1, 1, 2, 1, 2, 1, 3, 2, 4, 2, 4, 3, 5, 4, 6, 4, 7, 5, 8, 6, 9, 7, 10, 8, 11, 9, 13, 10, 14, 11, 15, 13, 17, 14, 18, 15, 20, 17, 22, 18, 23, 20, 25, 22, 27, 23, 29, 25, 31, 27, 33, 29, 35, 31, 37, 33, 40, 35, 42, 37
OFFSET
0,7
FORMULA
G.f.: 1/((1-x^2)*(1-x^5)*(1-x^6)).
a(n) = a(n-2) + a(n-5) + a(n-6) - a(n-7) - a(n-8) - a(n-11) + a(n-13). - Wesley Ivan Hurt, Apr 18 2023
MATHEMATICA
CoefficientList[Series[1/((1-x^2)(1-x^5)(1-x^6)), {x, 0, 90}], x] (* or *) LinearRecurrence[ {0, 1, 0, 0, 1, 1, -1, -1, 0, 0, -1, 0, 1}, {1, 0, 1, 0, 1, 1, 2, 1, 2, 1, 3, 2, 4}, 90] (* Harvey P. Dale, May 06 2022 *)
CROSSREFS
Sequence in context: A217317 A331128 A154958 * A025802 A145706 A139631
KEYWORD
nonn
AUTHOR
STATUS
approved