login
A025046
a(n) = the least odd prime p such that there are exactly n consecutive quadratic remainders modulo p.
1
3, 5, 19, 17, 67, 71, 131, 73, 277, 311, 827, 241, 1607, 2543, 3691, 1559, 6803, 5711, 14969, 1009, 43103, 10559, 52057, 2689, 90313, 162263, 127403, 18191, 209327, 31391, 607153, 8089, 1305511, 298483, 1694353, 33049, 3205777, 1523707
OFFSET
2,1
COMMENTS
The values -1,0,+1 are considered consecutive.
EXAMPLE
a(5)=17 because -2,-1,0,+1,+2 are quadratic remainders, squares of 7,4,0,1,11.
CROSSREFS
Cf. A097159.
Sequence in context: A272019 A270723 A242961 * A305700 A299073 A329797
KEYWORD
nonn
EXTENSIONS
Edited by Don Reble, May 31 2007
STATUS
approved