login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A024868
a(n) = 2*(n+1) + 3*n + ... + (k+1)*(n+2-k), where k = floor(n/2).
2
6, 8, 22, 27, 52, 61, 100, 114, 170, 190, 266, 293, 392, 427, 552, 596, 750, 804, 990, 1055, 1276, 1353, 1612, 1702, 2002, 2106, 2450, 2569, 2960, 3095, 3536, 3688, 4182, 4352, 4902, 5091, 5700, 5909, 6580, 6810, 7546, 7798, 8602, 8877, 9752, 10051, 11000, 11324, 12350
OFFSET
2,1
FORMULA
a(n) = Sum_{i=1..floor(n/2)} (i+1)*(n-i+2) = floor(n/2)*(-2*floor(n/2)^2 + 3*n*floor(n/2) + 9*n + 14)/6, n>1. - Wesley Ivan Hurt, Sep 20 2013
G.f.: x^2*(6 + 2*x - 4*x^2 - x^3 + x^4) / ( (1+x)^3*(x-1)^4 ). - R. J. Mathar, Sep 25 2013
a(n) = 6*A058187(n-2) +2*A058187(n-3) -4*A058187(n-4) -A058187(n-5) +A058187(n-6). - R. J. Mathar, Sep 25 2013
a(n) = ( 4*n^3 + 33*n^2 + 38*n - 27 )/48 + (-1)^n*(n+3)^2/16. - R. J. Mathar, Sep 25 2013
E.g.f.: (1/24)*( x*(2*x^2 + 24*x + 27)*cosh(x) + (2*x^3 + 21*x^2 + 48*x - 27)*sinh(x) ). - G. C. Greubel, Jul 13 2022
MAPLE
seq(sum((i+1)*(k-i+2), i=1..floor(k/2)), k=2..70); # Wesley Ivan Hurt, Sep 20 2013
MATHEMATICA
Table[Floor[n/2] (-2Floor[n/2]^2 +3n*Floor[n/2] +9n +14)/6, {n, 2, 100}] (* Wesley Ivan Hurt, Sep 20 2013 *)
CoefficientList[Series[(6 +2x -4x^2 -x^3 +x^4)/((1+x)^3 (1-x)^4), {x, 0, 60}], x] (* Vincenzo Librandi, Sep 26 2013 *)
LinearRecurrence[{1, 3, -3, -3, 3, 1, -1}, {6, 8, 22, 27, 52, 61, 100}, 50] (* Harvey P. Dale, Aug 11 2023 *)
PROG
(Magma) [19*n/24-9/16+n^3/12+11*n^2/16+(-1)^n*(3*n/8 +9/16+n^2/16): n in [2..50]]; // Vincenzo Librandi, Sep 26 2013
(SageMath) [(1/48)*(4*n^3 +33*n^2 +38*n -27 +3*(-1)^n*(n+3)^2) for n in (2..60)] # G. C. Greubel, Jul 13 2022
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved