%I #13 Jul 30 2015 22:08:55
%S 1,30,601,10122,155029,2238894,31086721,419796498,5553887821,
%T 72338375382,930742000825,11858835825018,149897892005317,
%U 1882300860052734,23506492073507953,292186168385703522
%N Expansion of 1/((1-x)(1-6x)(1-11x)(1-12x)).
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (30, -299, 1062, -792).
%F a(n) = (25*12^(n+3) - 33*11^(n+3) + 11*6^(n+3) - 3)/1650. [_Yahia Kahloune_, Jun 28 2013]
%F a(0)=1, a(1)=30, a(2)=601, a(3)=10122, a(n)=30*a(n-1)-299*a(n-2)+ 1062*a(n-3)- 792*a(n-4). - _Harvey P. Dale_, Nov 20 2013
%t CoefficientList[Series[1/((1-x)(1-6x)(1-11x)(1-12x)),{x,0,20}],x] (* or *) LinearRecurrence[{30,-299,1062,-792},{1,30,601,10122},20] (* _Harvey P. Dale_, Nov 20 2013 *)
%K nonn,easy
%O 0,2
%A _N. J. A. Sloane_.