login
Expansion of e.g.f. sinh(exp(x)-1).
39

%I #57 Sep 08 2022 08:44:48

%S 0,1,1,2,7,27,106,443,2045,10440,57781,340375,2115664,13847485,

%T 95394573,690495874,5235101739,41428115543,341177640610,2917641580783,

%U 25866987547865,237421321934176,2252995117706961,22073206655954547,222971522853648704,2319379362420267753

%N Expansion of e.g.f. sinh(exp(x)-1).

%C Number of partitions of an n-element set into an odd number of classes. - _Peter Luschny_, Apr 25 2011

%C Let A(0) = 1, B(0) = 0; A(n+1) = Sum_{k=0..n} binomial(n,k)*B(k), B(n+1) = Sum_{k=0..n} binomial(n,k)*A(k); entry gives B sequence (cf. A024430).

%D L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 226, 4th line of table.

%H G. C. Greubel, <a href="/A024429/b024429.txt">Table of n, a(n) for n = 0..400</a>

%H A. Fekete and G. Martin, <a href="http://www.jstor.org/stable/2695545">Problem 10791: Squared Series Yielding Integers</a>, Amer. Math. Monthly, 108 (No. 2, 2001), 177-178.

%H S. K. Ghosal, J. K. Mandal, <a href="https://doi.org/10.1016/j.protcy.2013.12.341">Stirling Transform Based Color Image Authentication</a>, Procedia Technology, 2013 Volume 10, 2013, Pages 95-104.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/StirlingTransform.html">Stirling Transform.</a>

%F S(n,1) + S(n,3) + ... + S(n,2k+1), where k = [ (n-1)/2 ] and S(i,j) are Stirling numbers of second kind.

%F E.g.f.: sinh(exp(x)-1). - _N. J. A. Sloane_, Jan 28, 2001

%F a(n) = (A000110(n) - A000587(n)) / 2. - _Peter Luschny_, Apr 25 2011

%F G.f.: x*G(0) where G(k) = 1 - x*(2*k+1)/((2*x*k+x-1) - x*(2*x*k+x-1)/(x - (2*k+1)*(2*x*k+2*x-1)/G(k+1) )); (recursively defined continued fraction). - _Sergei N. Gladkovskii_, Jan 06 2013.

%F G.f.: x*G(0)/(1+x) where G(k) = 1 - 2*x*(k+1)/((2*x*k+x-1) - x*(2*x*k+x-1)/(x - 2*(k+1)*(2*x*k+2*x-1)/G(k+1) )); (recursively defined continued fraction). - _Sergei N. Gladkovskii_, Jan 06 2013.

%F G.f.: -x*(1+x)*sum(k=>0 x^(2*k)/((2*x*k+x-1)*prod(p=0...k (2*x*p-1)*(2*x*p-x-1)) . - _Sergei N. Gladkovskii_, Jan 06 2013

%F G.f.: sum(k>=0, x^(2*k+1)/prod(i=0...2*k+1, 1-i*x ). - _Sergei N. Gladkovskii_, Jan 06 2013.

%F a(n) ~ n^n / (2 * (LambertW(n))^n * exp(n+1-n/LambertW(n)) * sqrt(1+LambertW(n))). - _Vaclav Kotesovec_, Aug 04 2014

%e G.f. = x + x^2 + 2*x^3 + 7*x^4 + 27*x^5 + 106*x^6 + 443*x^7 + 2045*x^8 + ...

%p b:= proc(n, t) option remember; `if`(n=0, t, add(

%p b(n-j, 1-t)*binomial(n-1, j-1), j=1..n))

%p end:

%p a:= n-> b(n, 0):

%p seq(a(n), n=0..28); # _Alois P. Heinz_, Jan 15 2018

%p with(combinat); seq((bell(n) - BellB(n, -1))/2, n = 0..25); # _G. C. Greubel_, Oct 09 2019

%t CoefficientList[Series[Sinh[E^x-1], {x, 0, 20}], x] * Range[0, 20]! (* _Vaclav Kotesovec_, Aug 04 2014 *)

%t Table[(BellB[n] - BellB[n, -1])/2, {n, 0, 20}] (* _Vladimir Reshetnikov_, Nov 01 2015 *)

%o (Sage)

%o def A024429(n) :

%o return add(stirling_number2(n,i) for i in range(1,n+n%2,2))

%o # _Peter Luschny_, Feb 28 2012

%o (PARI) x='x+O('x^50); concat([0], Vec(serlaplace(sinh(exp(x)-1)))) \\ _G. C. Greubel_, Nov 12 2017

%o (Magma) a:= func< n | (&+[StirlingSecond(n,2*k+1): k in [0..Floor(n/2)]]) >;

%o [a(n): n in [0..25]]; // _G. C. Greubel_, Oct 09 2019

%o (GAP) List([0..25], n-> Sum([0..Int(n/2)], k-> Stirling2(n,2*k+1)) ); # _G. C. Greubel_, Oct 09 2019

%Y Cf. A024430, A121867, A121868, A000110, A000587.

%K nonn

%O 0,4

%A _Clark Kimberling_

%E Description changed by _N. J. A. Sloane_, Sep 05 2006