login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A024406
Ordered areas of primitive Pythagorean triangles.
27
6, 30, 60, 84, 180, 210, 210, 330, 504, 546, 630, 840, 924, 990, 1224, 1320, 1386, 1560, 1710, 1716, 2310, 2340, 2574, 2730, 2730, 3036, 3570, 3900, 4080, 4290, 4620, 4914, 5016, 5610, 5814, 6090, 6630, 7140, 7440, 7854, 7956, 7980, 7980, 8970, 8976, 9690
OFFSET
1,1
COMMENTS
This sequence also gives Fibonacci's congruous numbers (or congrua) divided by 4 with multiplicities, not regarding leg exchange in the underlying primitive Pythagorean triangle. See A258150 and the example. - Wolfdieter Lang, Jun 14 2015
The squarefree part of an entry which is not squarefree is a primitive congruent number from A006991 belonging to a Pythagorean triangle with rational (not all integer) side lengths (and its companion obtained by exchanging the legs). See the W. Lang link. - Wolfdieter Lang, Oct 25 2016
FORMULA
a(n) = 6*A020885(n). - Lekraj Beedassy, Apr 30 2004
a(n) = A121728(n)*A121729(n)/2. - M. F. Hasler, Apr 16 2020
EXAMPLE
a(6) = a(7) = 210 corresponds to the area (in some squared length unit) of the primitive Pythagorean triangles (21, 20, 29) and (35, 12, 37). Fibonacci's congruum C = 840 = 210*4 belongs to the two triples [x, y, z] = [29, 41, 1] and [37, 47, 23], solving x^2 + C = y^2 and x^2 - C = z^2. - Wolfdieter Lang, Jun 14 2015
a(5) = 180 = 6^2*5 lead to the primitive congruent number A006991(1) = 5 from the primitive Pythagorean triangle [9, 40, 41] after division by 6: [3/2, 20/3, 41/6]. See the link for the other nonsquarefree a(n) numbers. - Wolfdieter Lang, Oct 25 2016
CROSSREFS
Sequence in context: A044083 A377992 A239978 * A024365 A057229 A120734
KEYWORD
nonn,easy
STATUS
approved