login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

a(n) = [ (3rd elementary symmetric function of S(n))/(first elementary symmetric function of S(n)) ], where S(n) = {first n+2 positive integers congruent to 2 mod 3}.
0

%I #12 Jul 07 2019 02:25:27

%S 5,31,101,248,515,952,1619,2586,3930,5738,8107,11141,14954,19670,

%T 25420,32345,40596,50331,61718,74935,90167,107609,127466,149950,

%U 175283,203697,235431,270734,309865,353090,400685,452936,510136,572588,640605,714507

%N a(n) = [ (3rd elementary symmetric function of S(n))/(first elementary symmetric function of S(n)) ], where S(n) = {first n+2 positive integers congruent to 2 mod 3}.

%F Conjecture: a(n)= +4*a(n-1) -6*a(n-2) +5*a(n-3) -5*a(n-4) +6*a(n-5) -4*a(n-6) +a(n-7). G.f. x*(-5-11*x-7*x^2-5*x^3+x^4) / ( (1+x+x^2)*(x-1)^5 ). - _R. J. Mathar_, Oct 08 2011

%F a(n) = floor(A024392(n) / A005449(n + 2)). - _Sean A. Irvine_, Jul 06 2019

%Y Cf. A024392, A005449.

%K nonn

%O 1,1

%A _Clark Kimberling_