%I #14 May 18 2024 14:58:00
%S 1,1,1,3,4,4,14,13,16,48,55,50,173,148,147,665,580,559,1920,1447,1975,
%T 6240,4228,5689,15764,17562,14332,46207,39071,35317,172311,134752,
%U 110758,381384,299971,479935,1154568,733900,1027967,2581763,2636545,2333308
%N Conjecturally, number of infinitely recurring prime patterns of width 2n-1.
%C Of the patterns counted by A023192, the number of those that start and end with a prime. - _Sean A. Irvine_, May 27 2019
%e From _Jon E. Schoenfield_, May 17 2024: (Start)
%e The table below lists every (conjecturally) infinitely recurring prime pattern of width 2n-1 for n = 1..7. Each p represents a prime; each c represents a composite.
%e .
%e n 2n-1 a(n) prime patterns
%e - ---- ---- --------------------------------------------------
%e 1 1 1 p
%e 2 3 1 pcp
%e 3 5 1 pcccp
%e 4 7 3 pcccccp, pcpcccp, pcccpcp
%e 5 9 4 pcccccccp, pcpcccccp, pcccccpcp, pcpcccpcp
%e 6 11 4 pcccccccccp, pcccpcccccp, pcccccpcccp, pcccpcpcccp
%e 7 13 14 pcccccccccccp, pcpcccccccccp, pcccpcccccccp,
%e pcccccpcccccp, pcccccccpcccp, pcccccccccpcp,
%e pcpcccpcccccp, pcpcccccpcccp, pcccpcpcccccp,
%e pcccpcccccpcp, pcccccpcpcccp, pcccccpcccpcp,
%e pcpcccpcpcccp, pcccpcpcccpcp
%e (End)
%Y Cf. A023190, A023191, A023192.
%K nonn,more
%O 1,4
%A _David W. Wilson_
%E Name edited by _Jon E. Schoenfield_, May 17 2024