login
A022934
Number of 2^m between e^n and e^(n+1).
2
1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1
OFFSET
0,3
COMMENTS
Obviously each term is either 1 or 2. If n tends to infinity, then Sum(a(i), i=0...n)/n converges to 1/log(2) which is approximately 1.442695. The density of 1's in the sequence is 2-1/log(2) which is 0.5573049591. - Stefan Steinerberger, Apr 16 2006
MATHEMATICA
Table[Floor[Log[2, E^(n + 1)]] - Floor[Log[2, E^n]], {n, 0, 100}] (* Stefan Steinerberger, Apr 16 2006 *)
CROSSREFS
Sequence in context: A232740 A188512 A081129 * A107450 A341765 A104248
KEYWORD
nonn
STATUS
approved