login
Expansion of Product_{m>=1} (1+m*q^m)^-24.
2

%I #18 Jul 20 2018 03:47:19

%S 1,-24,252,-1520,5982,-18240,57320,-198192,604389,-1567840,4210116,

%T -12229632,32349958,-77844000,196563240,-510760752,1233110610,

%U -2871650184,6899741020,-16499031456,37934952672,-86122235648

%N Expansion of Product_{m>=1} (1+m*q^m)^-24.

%C This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = 24, g(n) = -n. - _Seiichi Manyama_, Dec 30 2017

%H Seiichi Manyama, <a href="/A022716/b022716.txt">Table of n, a(n) for n = 0..1000</a>

%t With[{nmax = 50}, CoefficientList[Series[Product[(1 + k*q^k)^-24, {k, 1, nmax}], {q, 0, nmax}], q]] (* _G. C. Greubel_, Jul 20 2018 *)

%o (PARI) m=50; q='q+O('q^m); Vec(prod(n=1,m,(1+n*q^n)^-24)) \\ _G. C. Greubel_, Jul 20 2018

%Y Column k=24 of A297325.

%K sign

%O 0,2

%A _N. J. A. Sloane_