login
A022455
Expansion of 1/((1-x)*(1-5*x)*(1-7*x)*(1-11*x)).
1
1, 24, 386, 5256, 65667, 781200, 9024772, 102391152, 1148621573, 12793511016, 141851544198, 1568288482488, 17306928957319, 190768033959072, 2101198710944264, 23132476329120864, 254592463916330505
OFFSET
0,2
FORMULA
a(0)=1, a(1)=24, a(2)=386, a(3)=5256; for n>3, a(n) = 24*a(n-1) -190*a(n-2) +552*a(n-3) -385*a(n-4). - Harvey P. Dale, Feb 25 2012
a(n) = 1/240*(-1+5^(3+n)-5*7^(2+n)+11^(2+n)). Harvey P. Dale, Feb 25 2012
MATHEMATICA
CoefficientList[Series[1/((1-x)(1-5x)(1-7x)(1-11x)), {x, 0, 30}], x] (* or *) LinearRecurrence[{24, -190, 552, -385}, {1, 24, 386, 5256}, 30] (* Harvey P. Dale, Feb 25 2012 *)
PROG
(Magma) m:=25; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-x)*(1-5*x)*(1-7*x)*(1-11*x)))); // Vincenzo Librandi, Jul 12 2013
(PARI) x='x+O('x^30); Vec(1/((1-x)*(1-5*x)*(1-7*x)*(1-11*x))) \\ G. C. Greubel, Feb 28 2018
CROSSREFS
Sequence in context: A025952 A028031 A042108 * A021954 A025950 A020584
KEYWORD
nonn,easy
STATUS
approved