%I #20 Sep 08 2022 08:44:46
%S 1,2047,2794155,3269560515,3571013994483,3774561792168531,
%T 3926442969043883795,4052305562169692070035,4165817792093527797314451,
%U 4274137206973266943778085267,4380990637147598617372537398675
%N Gaussian binomial coefficients [ n,10 ] for q = 2.
%D F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
%H Vincenzo Librandi, <a href="/A022193/b022193.txt">Table of n, a(n) for n = 10..200</a>
%F a(n) = Product_{i=1..10} (2^(n-i+1)-1)/(2^i-1), by definition. - _Vincenzo Librandi_, Aug 03 2016
%t Table[QBinomial[n, 10, 2], {n, 10, 40}] (* _Vincenzo Librandi_, Aug 03 2016 *)
%o (Sage) [gaussian_binomial(n,10,2) for n in range(10,21)] # _Zerinvary Lajos_, May 25 2009
%o (Magma) r:=10; q:=2; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // _Vincenzo Librandi_, Aug 03 2016
%o (PARI) r=10; q=2; for(n=r,30, print1(prod(j=1,r,(1-q^(n-j+1))/(1-q^j)), ", ")) \\ _G. C. Greubel_, May 30 2018
%K nonn
%O 10,2
%A _N. J. A. Sloane_