%I #19 Sep 08 2022 08:44:46
%S 1,511,174251,50955971,13910980083,3675639930963,955841412523283,
%T 246614610741341843,63379954960524853651,16256896431763117598611,
%U 4165817792093527797314451,1066968301301093995246996371,273210326382611632738979052435
%N Gaussian binomial coefficients [ n,8 ] for q = 2.
%H Vincenzo Librandi, <a href="/A022191/b022191.txt">Table of n, a(n) for n = 8..200</a>
%F a(n) = Product_{i=1..8} (2^(n-i+1)-1)/(2^i-1), by definition. - _Vincenzo Librandi_, Aug 03 2016
%t Table[QBinomial[n, 8, 2], {n, 8, 40}] (* _Vincenzo Librandi_, Aug 03 2016 *)
%o (Sage) [gaussian_binomial(n,8,2) for n in range(8,20)] # _Zerinvary Lajos_, May 25 2009
%o (Magma) r:=8; q:=2; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // _Vincenzo Librandi_, Aug 03 2016
%o (PARI) r=8; q=2; for(n=r,30, print1(prod(j=1,r,(1-q^(n-j+1))/(1-q^j)), ", ")) \\ _G. C. Greubel_, May 30 2018
%K nonn
%O 8,2
%A _N. J. A. Sloane_
%E Offset changed by _Vincenzo Librandi_, Aug 03 2016