OFFSET
0,2
COMMENTS
a(n-1)=sum(P(15;n-1-k,k),k=0..ceiling((n-1)/2)), n>=1, with a(-1)=14. These are the SW-NE diagonals in P(15;n,k), the (15,1) Pascal triangle. Cf. A093645 for the (10,1) Pascal triangle. Observation by Paul Barry, Apr 29 2004. Proof via recursion relations and comparison of inputs.
LINKS
Tanya Khovanova, Recursive Sequences
Index entries for linear recurrences with constant coefficients, signature (1,1)
FORMULA
a(n)= a(n-1)+a(n-2), n>=2, a(0)=1, a(1)=15. a(-1):=14.
G.f.: (1+14*x)/(1-x-x^2).
a(n) = A101220(14,0,n+1). - Ross La Haye, May 02 2006
MATHEMATICA
a={}; b=1; c=15; AppendTo[a, b]; AppendTo[a, c]; Do[b=b+c; AppendTo[a, b]; c=b+c; AppendTo[a, c], {n, 1, 12, 1}]; a (* Vladimir Joseph Stephan Orlovsky, Jul 23 2008 *)
LinearRecurrence[{1, 1}, {1, 15}, 40] (* Harvey P. Dale, Oct 11 2015 *)
PROG
(Magma) a0:=1; a1:=15; [GeneralizedFibonacciNumber(a0, a1, n): n in [0..30]]; // Bruno Berselli, Feb 12 2013
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved