login
A021844
Expansion of 1/((1-x)(1-4x)(1-6x)(1-12x)).
4
1, 23, 363, 4963, 63539, 787731, 9609811, 116281811, 1401253587, 16850623699, 202422366419, 2430363281619, 29172151056595, 350112652220627, 4201633221810387, 50421288464357587, 605065606114711763
OFFSET
0,2
FORMULA
a(n) = 3*12^(n+1)/11 -3*6^(n+1)/5 +2^(2*n+2)/3 -1/165. - R. J. Mathar, Mar 15 2011
a(0)=1, a(1)=23, a(2)=363, a(3)=4963, a(n)=23a(n-1)-166a(n-2)+ 432a(n-3)- 288a(n-4) [From Harvey P. Dale, May 11 2011]
MATHEMATICA
CoefficientList[Series[1/((1-x)(1-4x)(1-6x)(1-12x)), {x, 0, 40}], x] (* or *) LinearRecurrence[{23, -166, 432, -288}, {1, 23, 363, 4963}, 40] (* Harvey P. Dale, May 11 2011 *)
PROG
(PARI) Vec(1/((1-x)*(1-4*x)*(1-6*x)*(1-12*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
CROSSREFS
Sequence in context: A021664 A202666 A019682 * A019672 A021629 A019869
KEYWORD
nonn,easy
AUTHOR
STATUS
approved