This site is supported by donations to The OEIS Foundation.

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A021011 Pisot sequence P(6,11), a(0)=6, a(1)=11, a(n+1) is the nearest integer to a(n)^2/a(n-1). 1
 6, 11, 20, 36, 65, 117, 211, 381, 688, 1242, 2242, 4047, 7305, 13186, 23802, 42965, 77556, 139996, 252706, 456158, 823408, 1486329, 2682964, 4843003, 8742077, 15780273, 28484880, 51417893, 92814143, 167538276, 302422379, 545900898 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS Colin Barker, Table of n, a(n) for n = 0..1000 FORMULA G.f.: (3x^5+2x^4+x^3+4x^2-x+6)/(-x^6-x^3+x^2-2x+1) (conjectured). - Ralf Stephan, May 12 2004 MATHEMATICA RecurrenceTable[{a[n] == Ceiling[a[n - 1]^2/a[n - 2] - 1/2], a[0] == 6, a[1] == 11}, a, {n, 0, 31}] (* or *) First@ Transpose[NestList[{#2, Round[#2^2/#1]} & @@ # &, {6, 11}, 31]] (* Michael De Vlieger, Aug 08 2016, after Harvey P. Dale at A021008 *) PROG (PARI) pisotP(nmax, a1, a2) = {   a=vector(nmax); a[1]=a1; a[2]=a2;   for(n=3, nmax, a[n] = ceil(a[n-1]^2/a[n-2]-1/2));   a } pisotP(50, 6, 11) \\ Colin Barker, Aug 08 2016 CROSSREFS Sequence in context: A160842 A007745 A188556 * A000382 A208670 A208726 Adjacent sequences:  A021008 A021009 A021010 * A021012 A021013 A021014 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.