login
A020569
Expansion of 1/((1-5x)(1-11x)(1-12x)).
1
1, 28, 537, 8780, 131681, 1872828, 25708777, 344166700, 4522666161, 58593270428, 750663052217, 9530987332620, 120125429898241, 1504795780456828, 18753752307454857, 232703290568738540
OFFSET
0,2
FORMULA
a(n) = 25*5^n/42 -121*11^n/6 +144*12^n/7. - R. J. Mathar, Jun 30 2013
a(0)=1, a(1)=28, a(2)=537; for n>2, a(n) = 28*a(n-1) -247*a(n-2) +660*a(n-3). - Vincenzo Librandi, Jul 04 2013
a(n) = 23*a(n-1) -132*a(n-2) +5^n. - Vincenzo Librandi, Jul 04 2013
MATHEMATICA
CoefficientList[Series[1 / ((1 - 5 x) (1 - 11 x) (1 - 12 x)), {x, 0, 20}], x] (* Vincenzo Librandi, Jul 04 2013 *)
LinearRecurrence[{28, -247, 660}, {1, 28, 537}, 20] (* Harvey P. Dale, Dec 25 2013 *)
PROG
(Magma) m:=20; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-5*x)*(1-11*x)*(1-12*x)))); /* or */ I:=[1, 28, 537]; [n le 3 select I[n] else 28*Self(n-1)-247*Self(n-2)+660*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Jul 04 2013
CROSSREFS
Sequence in context: A025957 A020758 A022000 * A163195 A092708 A163198
KEYWORD
nonn,easy
AUTHOR
STATUS
approved