

A018908


Define sequence S(a_0,a_1) by a_{n+2} is least integer such that a_{n+2}/a_{n+1}>a_{n+1}/a_n for n >= 0. This is S(3,4).


2



3, 4, 6, 10, 17, 29, 50, 87, 152, 266, 466, 817, 1433, 2514, 4411, 7740, 13582, 23834, 41825, 73397, 128802, 226031, 396656, 696082, 1221538, 2143649, 3761841, 6601570, 11584947, 20330164, 35676950, 62608682, 109870577, 192809421, 338356946, 593775047
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..1000
D. W. Boyd, Linear recurrence relations for some generalized Pisot sequences, Advances in Number Theory ( Kingston ON, 1991) 333340, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993.


MAPLE

a:= proc(n) option remember; `if`(n<2, [3, 4][n+1],
1 +floor(a(n1)^2/a(n2)))
end:
seq(a(n), n=0..50); # Alois P. Heinz, May 05 2014


CROSSREFS

Sequence in context: A310005 A068922 A032408 * A052548 A232268 A103049
Adjacent sequences: A018905 A018906 A018907 * A018909 A018910 A018911


KEYWORD

nonn


AUTHOR

R. K. Guy


STATUS

approved



