login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A018783 Number of partitions of n into parts having a common factor. 47
0, 0, 1, 1, 2, 1, 4, 1, 5, 3, 8, 1, 14, 1, 16, 9, 22, 1, 38, 1, 45, 17, 57, 1, 94, 7, 102, 30, 138, 1, 218, 1, 231, 58, 298, 21, 451, 1, 491, 103, 644, 1, 919, 1, 1005, 203, 1256, 1, 1784, 15, 1993, 299, 2439, 1, 3365, 62, 3735, 492, 4566, 1, 6252, 1, 6843, 819, 8349, 107, 11096 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..10000

L. Naughton, G. Pfeiffer, Integer Sequences Realized by the Subgroup Pattern of the Symmetric Group, J. Int. Seq. 16 (2013) #13.5.8

FORMULA

a(n) = -Sum_{d|n, d<n} moebius(n/d)*A000041(d) = A000041(n) - A000837(n). - Vladeta Jovovic, Jun 17 2003

MAPLE

with(numtheory): with(combinat):

a:= n-> `if`(n=0, 0,

         numbpart(n) -add(mobius(n/d)*numbpart(d), d=divisors(n))):

seq(a(n), n=0..100); # Alois P. Heinz, Nov 29 2011

MATHEMATICA

A000837[n_] := Sum[ MoebiusMu[n/d]*PartitionsP[d], {d, Divisors[n]}]; a[0] = 0; a[n_] := PartitionsP[n] - A000837[n]; Table[a[n], {n, 0, 66}] (* Jean-Fran├žois Alcover, Oct 03 2013, after Vladeta Jovovic *)

PROG

(PARI) a(n) = - sumdiv(n, d, (d<n)*moebius(n/d)*numbpart(d)); \\ Michel Marcus, Oct 07 2017

CROSSREFS

Cf. A000041, A000837, A083710.

Sequence in context: A277100 A214579 A083711 * A200976 A328187 A298971

Adjacent sequences:  A018780 A018781 A018782 * A018784 A018785 A018786

KEYWORD

nonn

AUTHOR

David W. Wilson

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 17 09:50 EST 2020. Contains 330949 sequences. (Running on oeis4.)