login
A017457
a(n) = (11*n + 5)^9.
12
1953125, 68719476736, 7625597484987, 165216101262848, 1628413597910449, 10077696000000000, 45848500718449031, 167619550409708032, 520411082988487293, 1423311812421484544, 3517876291919921875
OFFSET
0,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
FORMULA
From G. C. Greubel, Sep 19 2019: (Start)
G.f.: (1953125 +68699945486*x +6938490608252*x^2 +92052268491098*x^3 +311158545054314*x^4 +327643477452290*x^5 +108279046743524*x^6 +9393030684758*x^7 +118487099537*x^8 +10077696*x^9)/(1-x)^10.
E.g.f.: (1953125 +68717523611*x +3744080242320*x^2 +23757577547495*x^3 +42209495908965*x^4 +29265638697141*x^5 +9191914318356*x^6 +1377002477202*x^7 +94532266521*x^8 +2357947691*x^9)*exp(x). (End)
MAPLE
seq((11*n+5)^9, n=0..20); # G. C. Greubel, Sep 19 2019
MATHEMATICA
(11Range[0, 20]+5)^9 (* or *) LinearRecurrence[ {10, -45, 120, -210, 252, -210, 120, -45, 10, -1}, {1953125, 68719476736, 7625597484987, 165216101262848, 1628413597910449, 10077696000000000, 45848500718449031, 167619550409708032, 520411082988487293, 1423311812421484544}, 20] (* Harvey P. Dale, Apr 08 2019 *)
PROG
(Magma) [(11*n+5)^9: n in [0..20]]; // Vincenzo Librandi, Sep 03 2011
(PARI) vector(20, n, (11*n-6)^9) \\ G. C. Greubel, Sep 19 2019
(Sage) [(11*n+5)^9 for n in (0..20)] # G. C. Greubel, Sep 19 2019
(GAP) List([0..20], n-> (11*n+5)^9); # G. C. Greubel, Sep 19 2019
CROSSREFS
Powers of the form (11*n+5)^m: A017449 (m=1), A017450 (m=2), A017451 (m=3), A017452 (m=4), A017453 (m=5), A017454 (m=6), A017455 (m=7), A017456 (m=8), this sequence (m=9), A017458 (m=10), A017459 (m=11), A017460 (m=12).
Sequence in context: A017133 A017229 A017337 * A017589 A308761 A236910
KEYWORD
nonn,easy
STATUS
approved