login
A016995
a(n) = (7*n + 1)^3.
1
1, 512, 3375, 10648, 24389, 46656, 79507, 125000, 185193, 262144, 357911, 474552, 614125, 778688, 970299, 1191016, 1442897, 1728000, 2048383, 2406104, 2803221, 3241792, 3723875, 4251528, 4826809
OFFSET
0,2
FORMULA
G.f.: (216*x^3 + 1333*x^2 + 508*x + 1)/(1-x)^4. - Vincenzo Librandi, Jan 27 2013
MAPLE
seq((7*n+1)^3, n=0..25); # Muniru A Asiru, Oct 13 2018
MATHEMATICA
CoefficientList[Series[(216*x^3 + 1333*x^2 + 508*x + 1)/(1 - x)^4, {x, 0, 30}], x] (* Vincenzo Librandi, Jan 27 2013 *)
(7*Range[0, 40]+1)^3 (* or *) LinearRecurrence[{4, -6, 4, -1}, {1, 512, 3375, 10648}, 40] (* Harvey P. Dale, Sep 15 2018 *)
PROG
(Magma) [(7*n+1)^3: n in [0..40]]; // Vincenzo Librandi, Jul 13 2011
(PARI) a(n) = (7*n+1)^3; \\ Altug Alkan, Oct 13 2018
(GAP) List([0..25], n->(7*n+1)^3); # Muniru A Asiru, Oct 13 2018
CROSSREFS
Sequence in context: A253985 A253978 A250574 * A254092 A254085 A197710
KEYWORD
nonn,easy
STATUS
approved