login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A016634
Decimal expansion of log(11).
5
2, 3, 9, 7, 8, 9, 5, 2, 7, 2, 7, 9, 8, 3, 7, 0, 5, 4, 4, 0, 6, 1, 9, 4, 3, 5, 7, 7, 9, 6, 5, 1, 2, 9, 2, 9, 9, 8, 2, 1, 7, 0, 6, 8, 5, 3, 9, 3, 7, 4, 1, 7, 1, 7, 5, 2, 1, 8, 5, 6, 7, 7, 0, 9, 1, 3, 0, 5, 7, 3, 6, 2, 3, 9, 1, 3, 2, 3, 6, 7, 1, 3, 0, 7, 5, 0, 5, 4, 7, 0, 8, 0, 0, 2, 6, 3, 4, 7, 9
OFFSET
1,1
REFERENCES
Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 2.
LINKS
Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
FORMULA
log(11) = 2*Sum_{n >= 1} 1/(n*P(n, 6/5)*P(n-1, 6/5)), where P(n, x) denotes the n-th Legendre polynomial. The first 20 terms of the series gives the approximation log(11) = 2.3978952727(47...), correct to 10 decimal places. - Peter Bala, Mar 19 2024
Equals 2*(log 2+log 5 -log 3)+Sum_{k>=1} (-1)^k/(k*100^k). - R. J. Mathar, Jun 10 2024
EXAMPLE
2.3978952727983705440619435779651292998217068539374171752185677...
MATHEMATICA
RealDigits[Log[11], 10, 120][[1]] (* Harvey P. Dale, Mar 09 2014 *)
PROG
(PARI) default(realprecision, 20080); x=log(11); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b016634.txt", n, " ", d)); \\ Harry J. Smith, May 16 2009
CROSSREFS
Cf. A016739 Continued fraction.
Sequence in context: A357053 A340442 A199963 * A244257 A171054 A205860
KEYWORD
nonn,cons
STATUS
approved