|
|
A016238
|
|
Expansion of 1/((1-x)*(1-5*x)*(1-11*x)).
|
|
1
|
|
|
1, 17, 218, 2554, 28875, 321531, 3556372, 39217748, 431883509, 4753160005, 52296967086, 575327673102, 6328909579903, 69619531257839, 765822473230760, 8424085352511016, 92665129612484457, 1019317379411645433, 11212495941899681794, 123337479202754409890
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 0..970
Index entries for linear recurrences with constant coefficients, signature (17,-71,55).
|
|
FORMULA
|
a(n) = 16*a(n-1) - 55*a(n-2) + 1 for n>1, a(0)=1, a(1)=17. - Vincenzo Librandi, Feb 10 2011
a(n) = 17*a(n-1) - 71*a(n-2) + 55*a(n-3). - Vincenzo Librandi, Aug 23 2018
a(n) = (2*11^(n+2) - 5^(n+3) + 3)/120. - Bruno Berselli, Aug 23 2018
|
|
MATHEMATICA
|
CoefficientList[Series[1 / ((1 - x) (1 - 5 x) (1 - 11 x)), {x, 0, 20}], x] (* Vincenzo Librandi, Aug 23 2018 *)
Table[(2 11^(n + 2) - 5^(n + 3) + 3)/120, {n, 0, 20}] (* Bruno Berselli, Aug 23 2018 *)
|
|
PROG
|
(MAGMA) I:=[1, 17]; [n le 2 select I[n] else 16*Self(n-1)-55*Self(n-2)+1: n in [1..30]]; // Vincenzo Librandi, Aug 23 2018
(MAGMA) [(2*11^(n+2)-5^(n+3)+3)/120: n in [0..20]]; // Bruno Berselli, Aug 23 2018
|
|
CROSSREFS
|
Sequence in context: A016185 A125452 A322538 * A016181 A285233 A063043
Adjacent sequences: A016235 A016236 A016237 * A016239 A016240 A016241
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
N. J. A. Sloane
|
|
STATUS
|
approved
|
|
|
|