OFFSET
0,5
COMMENTS
With offset 2 (and a(0)=a(1)=0) the number of 2's in all partitions of n into distinct parts. [Joerg Arndt, Feb 20 2014]
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Cristina Ballantine, Mircea Merca, On identities of Watson type, Ars Mathematica Contemporanea (2019) Vol. 17, 277-290.
FORMULA
G.f.: (1+x)*product(j>=3, 1+x^j ). - Emeric Deutsch, Apr 09 2006
a(n+2)=sum_{k=1..floor(n/2)} (-1)^(k-1)*A000009(n-2*k). - Mircea Merca, Feb 20 2014
a(n) ~ exp(Pi*sqrt(n/3)) / (8*3^(1/4)*n^(3/4)). - Vaclav Kotesovec, Oct 30 2015
EXAMPLE
a(8)=4 because we have [8],[7,1],[5,3] and [4,3,1].
MAPLE
g:=(1+x)*product(1+x^j, j=3..80): gser:=series(g, x=0, 70): seq(coeff(gser, x, n), n=0..57); # Emeric Deutsch, Apr 09 2006
MATHEMATICA
CoefficientList[Series[Product[1+q^n, {n, 1, 60}]/(1+q^2), {q, 0, 60}], q]
Table[Count[Select[IntegerPartitions[n], DeleteDuplicates[#] == # &], x_ /; ! MemberQ[x, 2]], {n, 0, 57}] (* Robert Price, May 17 2020 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Corrected and extended by Dean Hickerson, Oct 10, 2001
STATUS
approved