%I #19 Sep 08 2022 08:44:39
%S 1,-8638025,89538572808355,-898184256176675135525,
%T 9058617560471271225871839115,-91278255494743382265330154281509525,
%U 919894226814090294609303909820267635374635,-9270381253910297854571803793049953719997957501525
%N Gaussian binomial coefficient [ n,9 ] for q=-6.
%D J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
%D I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
%D M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
%H Vincenzo Librandi, <a href="/A015378/b015378.txt">Table of n, a(n) for n = 9..150</a>
%F a(n) = Product_{i=1..9} ((-6)^(n-i+1)-1)/((-6)^i-1). - _Vincenzo Librandi_, Nov 04 2012
%t QBinomial[Range[9,20],9,-6] (* _Harvey P. Dale_, Aug 16 2012 *)
%t Table[QBinomial[n, 9, -6],{n, 9, 18}] (* _Vincenzo Librandi_, Nov 04 2012 *)
%o (Sage) [gaussian_binomial(n,9,-6) for n in range(9,16)] # _Zerinvary Lajos_, May 25 2009
%o (Magma) r:=9; q:=-6; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // _Vincenzo Librandi_, Nov 04 2012
%Y Cf. Gaussian binomial coefficients [n,9] for q = -2..-13: A015371, A015375, A015376, A015377, A015379, A015380, A015381, A015382, A015383, A015384, A015385. - _Vincenzo Librandi_, Nov 04 2012
%K sign,easy
%O 9,2
%A _Olivier GĂ©rard_