%I
%S 1,85,14535,1652145,225683007,28005209505,3642010817055,
%T 462535373765985,59438516325245343,7593183562134412385,
%U 972884994173649887135,124468028808034701006945
%N Gaussian binomial coefficient [ n,7 ] for q = 2.
%D J. Goldman and G.C. Rota, The number of subspaces of a vector space, pp. 7583 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
%D I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
%D M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325351.
%H G. C. Greubel, <a href="/A015338/b015338.txt">Table of n, a(n) for n = 7..450</a>[Terms 7 through 200 were computed by Vincenzo Librandi; terms 201 to 450 by G. C. Greubel, Nov 06 2016]
%t Table[QBinomial[n, 7, 2], {n, 7, 20}] (* _Vincenzo Librandi_, Oct 29 2012 *)
%o (Sage) [gaussian_binomial(n,7,2) for n in xrange(7,19)] # _Zerinvary Lajos_, May 27 2009
%o (MAGMA) /* By definition: */ r:=7; q:=2; [&*[(1q^(ni+1))/(1q^i): i in [1..r]]: n in [r..20]]; // _Bruno Berselli_, Oct 30 2012
%Y Diagonal k=7 of the triangular array A015109. See there for further references and programs.  _M. F. Hasler_, Nov 04 2012
%K sign,easy
%O 7,2
%A _Olivier GĂ©rard_, Dec 11 1999
