login
A014852
Numbers k that divide s(k), where s(1)=1, s(j)=5*s(j-1)+j.
0
1, 5, 55, 355, 605, 3905, 6655, 25205, 42955, 73205, 201995, 277255, 472505, 805255, 1789555, 2221945, 3049805, 5197555, 5693105, 6049555, 7321105, 8857805, 14341645, 19685105, 24441395, 28150705, 33547855, 57173105, 62624155, 66545105, 80532155, 97435855, 114935155, 127058405
OFFSET
1,2
COMMENTS
The sequence so far (for k > 1) is the smallest terms of the values of (5 * 11^i * 71^m) for i,m >= 0. Is there another term (prime?) in the product or can it be proved that all terms have this form?
PROG
(PARI) lista(nn) = {nb = 1000; for (n=1, nn, v = vector(nb, i, (5^(i+(n-1)*nb+1)-4*(i+(n-1)*nb)-5)/(16*(i+(n-1)*nb))); w = select(n->(type(n) == "t_INT"), v, 1); for (k=1, #w, print1(w[k]+(n-1)*nb, ", ")); kill(v); ); } \\ Michel Marcus, May 31 2014
(PARI) is(n) = n%2 == 1 && lift(Mod(5, n)^(n + 1) - Mod(5, n)) == 0 \\ David A. Corneth, Aug 08 2021
CROSSREFS
s(n) = A014827(n).
Sequence in context: A103326 A060558 A348065 * A144893 A015266 A138163
KEYWORD
nonn
EXTENSIONS
Comment and more terms from Larry Reeves (larryr(AT)acm.org), Mar 24 2000
a(10)-a(13) from Michel Marcus, May 31 2014
a(14)-a(17) from Jinyuan Wang, Aug 08 2021
a(18)-a(21) from Michael S. Branicky, Aug 08 2021
a(22)-a(34) from David A. Corneth, Aug 08 2021
STATUS
approved