login
A014299
Inverse of 290th cyclotomic polynomial.
1
1, -1, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
0,1
COMMENTS
Periodic with period length 290. - Ray Chandler, Apr 03 2017
LINKS
Index entries for linear recurrences with constant coefficients, signature (-1, 0, 0, 0, 1, 1, 0, 0, 0, -1, -1, 0, 0, 0, 1, 1, 0, 0, 0, -1, -1, 0, 0, 0, 1, 1, 0, 0, 1, 0, -1, 0, 0, -1, 0, 1, 0, 0, 1, 0, -1, 0, 0, -1, 0, 1, 0, 0, 1, 0, -1, 0, 0, -1, 0, 1, 0, -1, 0, 0, -1, 0, 1, 0, 0, 1, 0, -1, 0, 0, -1, 0, 1, 0, 0, 1, 0, -1, 0, 0, -1, 0, 1, 0, 0, 1, 1, 0, 0, 0, -1, -1, 0, 0, 0, 1, 1, 0, 0, 0, -1, -1, 0, 0, 0, 1, 1, 0, 0, 0, -1, -1).
MAPLE
with(numtheory, cyclotomic); c := n->series(1/cyclotomic(n, x), x, 80);
MATHEMATICA
CoefficientList[Series[1/Cyclotomic[290, x], {x, 0, 200}], x] (* Vincenzo Librandi, Apr 08 2014 *)
PROG
(Magma) t:=290; u:=1; m:=u*t+2; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/CyclotomicPolynomial(t))); // Vincenzo Librandi, Apr 08 2014
CROSSREFS
Sequence in context: A014164 A014319 A014154 * A014124 A014239 A014104
KEYWORD
sign,easy
AUTHOR
STATUS
approved