%I #11 Jul 29 2016 08:09:16
%S 10,21,44,92,192,401,838,1751,3659,7646,15977,33385,69760,145768,
%T 304592,636465,1329935,2778986,5806873,12133841,25354455,52979793,
%U 110704745,231324810,483368330,1010029761,2110523290,4410076544,9215143569,19255645599,40235931720
%N Pisot sequence E(10,21), a(n) = floor( a(n-1)^2/a(n-2)+1/2 ).
%H Colin Barker, <a href="/A014007/b014007.txt">Table of n, a(n) for n = 0..1000</a>
%H D. W. Boyd, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa34/aa3444.pdf">Some integer sequences related to the Pisot sequences</a>, Acta Arithmetica, 34 (1979), 295-305.
%H D. W. Boyd, <a href="https://www.researchgate.net/profile/David_Boyd7/publication/262181133_Linear_recurrence_relations_for_some_generalized_Pisot_sequences_-_annotated_with_corrections_and_additions/links/00b7d536d49781037f000000.pdf">Linear recurrence relations for some generalized Pisot sequences</a>, Advances in Number Theory ( Kingston ON, 1991) 333-340, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993.
%F Known not to satisfy any linear recurrence.
%o (PARI) pisotE(nmax, a1, a2) = {
%o a=vector(nmax); a[1]=a1; a[2]=a2;
%o for(n=3, nmax, a[n] = floor(a[n-1]^2/a[n-2]+1/2));
%o a
%o }
%o pisotE(50, 10, 21) \\ _Colin Barker_, Jul 29 2016
%K nonn
%O 0,1
%A _Simon Plouffe_