login
Expansion of 1/(1-x^2-x^3-x^4-x^5-x^6-x^7-x^8-x^9-x^10).
1

%I #19 Sep 28 2023 14:20:08

%S 1,0,1,1,2,3,5,8,13,21,34,54,88,141,228,367,592,954,1538,2479,3996,

%T 6441,10383,16736,26978,43486,70097,112991,182134,293587,473242,

%U 762833,1229634,1982084,3194982,5150088,8301584,13381575,21570168,34769609,56046190

%N Expansion of 1/(1-x^2-x^3-x^4-x^5-x^6-x^7-x^8-x^9-x^10).

%C Number of compositions of n into parts p where 2 <= p < = 10. [_Joerg Arndt_, Jun 24 2013]

%H Vincenzo Librandi, <a href="/A013987/b013987.txt">Table of n, a(n) for n = 0..1000</a>

%H R. Mullen, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL12/Mullen/mullen2.html">On Determining Paint by Numbers Puzzles with Nonunique Solutions</a>, JIS 12 (2009) 09.6.5

%H <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (0, 1, 1, 1, 1, 1, 1, 1, 1, 1).

%t CoefficientList[Series[1 / (1 - x^2 - x^3 - x^4 - x^5 - x^6 - x^7 - x^8 - x^9 - x^10), {x, 0, 40}], x] (* _Vincenzo Librandi_, Jun 24 2013 *)

%o (Magma) m:=40; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-x^2-x^3-x^4-x^5-x^6-x^7-x^8-x^9-x^10))); // _Vincenzo Librandi_, Jun 24 2013

%Y See A000045 for the Fibonacci numbers.

%K nonn,easy

%O 0,5

%A _N. J. A. Sloane_.